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The high speed flow of complex materials can often be modeled by the compress-
ible Euler equations coupled to (possibly many) additional advection equations. Tra-
ditionally, good computational results have been obtained by writing these systems
in fully conservative form and applying the general methodology of shock-capturing
schemes for systems of hyperbolic conservation laws. In this paper, we show how
to obtain the benefits of these schemes without the usual complexity of full char-
acteristic decomposition or the restrictions imposed by fully conservative differenc-
ing. Instead, under certain conditions defined in Section 2, the additional advection
equations can be discretized individually with a nonconservative scheme while the
remaining system is discretized using a fully conservative approach, perhaps based
on a characteristic field decomposition. A simple extension of the Lax—Wendroff
Theorem is presented to show that under certain verifiable hypothesis, our noncon-
servative schemes converge to weak solutions of the fully conservative system. Then
this new technique is applied to systems of equations from compressible multiphase
flow, chemically reacting flow, and explosive materials modeling. In the last instance,
the flexibility introduced by this approach is exploited to change a weakly hyper-
bolic system into an equivalent strictly hyperbolic system, and to remove certain
nonphysical modeling assumptionse 2000 Academic Press

1. INTRODUCTION

It is widely believed that numerical methods for discretizing the Euler equations shc
have discrete conservation of mass, momentum, and energy as well as an entropy f
low viscosity schemes. Conservative schemes have limit solutions which are weak solu
of the Euler equations yielding accurate representation of the shock speeds and jum,
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contrast, nonconservative schemes generally give limit solutions which have incorrect s
speeds and/or jumps, e.g., see [15]. Note that the work in [13] derived and used sp
viscosity terms that mimic the Navier—Stokes viscosity in order to reduce these type
nonconservative errors.

As models become richer in physics and mathematics, more and more equation
added. Some common examples are the addition of mass fraction equations for chem
reacting flow [7] and the addition of the level set equation for compressible gas flow [:
Another example is the Baer—Nunziato (BN) two phase model for solid explosives .
propellants [1], where a second set of Euler equations is added for the solid phase
a volume fraction equation is added to close the system. In addition, the chemical sc
terms of the BN model require the addition of many more equations, not all of which
known or agreed upon by the community [10, 2]. As new conservation laws are adde
the Euler equations, the Jacobian matrix required for upwind schemes grows accordi
usually becoming large and unwieldy.

For a given system one can often identify a minimal conservative system that cont
the truly nonlinear fields. In the chemically reacting flow model and the level set model
Euler equations are the minimal system containing the sound waves. It will be shown
both the mass fraction equations and the level set equation can be written in advection
and upwinded separately according to the particle velocity without degrading the qualit
the numerical solution. In fact, the resulting solution is as good, if not better than the f
conservative method. In the BN model, the minimal conservative system consists of the
sets of Euler equations which contain the truly nonlinear fields for both the gas sound w
and the solid sound waves. The volume fraction equation and the extra equations add:
chemical source terms will be put into advection form and upwinded separately accor
to the appropriate particle velocity (gas or solid). Note that the BN system differs from
first two examples, where the minimal system was only the Euler equations and all a
equations were put into advection form. The reason for this difference is that the secon
of Euler equations, added to model the solid, contains quantities which have jumps the
not advected along streamlines, e.g., shock waves in the solid.

One often adds new advection equations of the form

Zi+uZy=0 (1)
to the minimal system. The continuity equation is
P+ (pU)x =0, (2)

wherep is the density and is the velocity. Multiplying Eq. (1) by and adding it toZ
times Eq. (2) results in

(P2 + (pZwyx =0 (3

as a new equation in conservation form. If the correct Rankine—Hugoniot jump conditi
of the full system are such that discontinuitieZimre advected along streamlines then th
technique introduced in this paper applies. This is the case for the mass fraction equa
the level set equation, and the volume fraction equation of the BN model, but not the
for the second set of Euler equations in the BN model which must be added to the min
system. As a further illustration, consider

S+us =0, 4)
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whereSis the entropy per unit mass. While this equation is valid away from shocks, disc
tinuities in S are not necessarily advected along streamlines and the technique introdi
in this paper does not apply. The advection of discontinuities &ong streamlines can be
made more precise by considering a discontinuity moving with sjpeethe well known
jump conditions for Egs. (2) and (3) are

Pleit(Uieft — D) = prignt (Uright — D) (5)

and

PreftZieft(Uiett — D) = pright Zright (Uright — D) (6)

which can be combined to obtain
Pright(Ziett — Zright) (Uright — D) =0 (7)

illustrating thatZ must be continuous, unlesggn = D = ujer. That is, discontinuities of
Z move with the particle velocity. Moreovét is continuous across shocks. Note that thes
statements are generally not true for the entropy.

There are two distinct kinds of advection equations which may be added to a mini
system. The first kind advects quantities that the minimal system depends on; exan
include dependence of the pressure on the mass fractions, the level set function, c
volume fraction. The left and right eigenvectors of the Jacobian matrix are needed in ¢
to use an upwind scheme. These types of advection equations dictate an increase
size of the left eigenvector, since information is needed from these variables to accur
project into the characteristic fields. However, the right eigenvector remains the ler
of the minimal system, since only the minimal system is updated using the character
fields, while the advection equations are updated individually. The second kind of advec
equation advects those quantities that the minimal systemradspend on, even though
the new equations may be dependent on the minimal system for their characteristic velc
These types of equations occur in newer models such as the BN equations wher
advected quantities have been added in order to model the chemical source terms.
advection equations have no effect on the hyperbolic part of the minimal system and d
change the eigensystem at all, i.e., neither the right nor left eigenvector of the assoc
Jacobian matrix of the minimal system changes. Here the savings in simplicity of sch
design and programming effort are enormous using our technique rather than star
conservation form discretizations, because one only needs to discretize simple addit
advection equations. There are also significant gains in execution time.

In Section 5, a conservative equation that introduces a weak hyperbolicity in the
model (which implies that the problem is mildly ill-posed) is discussed. In this instance,
identification of a quantity with discontinuities that advect along streamlines is extrem
useful since the conservative equation is equivalent to advecting a quantity which blow
analytically as the reaction proceeds to completion. This problem is easily fixed by advec
an equivalent quantity which goes to zero as the reaction proceeds to completion. Fui
more, putting this well behaved advection equation into conservative form and solvin
the usual way removes the weak hyperbolicity for the full conservation form as well.

Once the advection equations are isolated from the minimal conservative system, gr
flexibility in scheme design can be exploited. If the advected quantity is continuous, e.g.
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level set function, then one can use high order essentially nonoscillatory (ENO) Hamilt
Jacobi methods which gain an order of accuracy at extrema over the conservative
flux method and are also somewhat easier to implement [21, 11]. If the advected qua
is discontinuous, our theoretical and numerical results indicate that nonconservative
form is preferable. That is, we recommend that the spatial term of

Zi+uZy=0 8

be approximated as

uZy ~ U : 9)
where 2i+1/2 can be viewed as a numerical flux function consistent \WithFor discon-
tinuous advected quantities, the contact discontinuities can be sharpened with arti
compression methods [22]. In fact, isolating the advection equations in a flux form
allows nonconservative flux differencing opens up new research avenues such as the
of a fully multidimensional artificial compression method, which could not be carried c
as easily with conservative numerical methods.

2. THEORETICAL JUSTIFICATION

The general theorem concerns the following system of equatioR3 inR*

g+V-f(g,2)=0 (10)
Zi+u-VZ =0, (11)

wheref = (f, g, h) andu = (u, v, w). Note thatq, f, g, andh are alll vectors whileZ is
anm vector. In regions of smoothness, we assume that Egs. (10) and (11) are equivale
a conservative system havihg- m dependent variables and that the jump conditions f
the conservative system are

[f-N] = D[d] (12)
[Z](u-N—-D) =0, (13)

whereN is the unit normal to the surface of discontinuity, ddds the local discontinuity
speed in the normal direction. For simplicity of exposition only we consiRfex R* in
the following.

We approximate the system using the conservation form fogthariables and the
nonconservative flux based form for tHevariables. Thus we have

At
nel
At =l = o [(Fay = Fay) + (Gl = oty (14)

whereF, , ; andG{; ., are Lipschitz continuous numerical flux functions consiste:
with f(q, Z) andg(q, Z), respectively. We also have

At . . R R
=120 - X [Uin.j (Zﬁ%,j - Zin—%,j) + 7] (Zi.i+% - Zi,i—%)}’ (15)

WhereZi”ﬂ/z’j and Zﬂjﬂ/z are Lipschitz continuous flux functions consistent with
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We make the following assumptions: SupposeAasAx, Ay — 0, a subsequence of
the approximate solutions generated by Egs. (14) and (15) is bounded a.e. convergel
piecewise differentiable limi{g, Z), for which Z has jumps only where is differentiable.

In addition we assume that the first divided differences iandy of these approxima-
tions uﬂj and vﬂj are uniformly bounded by an integrable function in any compact s
Q c R? for which the limit solution(u, v) is differentiable, i.e.uﬂj andvi’fj are each uni-
formly bounded inWw*(2), and that similar statements are true Eﬂj in any compact
setQ’ c R? for which the limit solutionZ is differentiable. Then we have the following
result:

THEOREM 1. The piecewise differentiable limig, Z) is a weak solution of Eqg10)
and(11), i.e. itis a classical solution when it is differentiable and it satisfies Efj8) and
(13) at jumps.

Remark 1. Our assumptions are considerably stronger than those of the classical L
Wendroff theorem [14] which requires only bounded a.e. convergence. Nevertheles
our calculations in this paper (and elsewhere) using this method, we have observec
our assumptions were valid. In fact the divided differences of the approximations t
were always uniformly bounded away from the discontinuities of the limiting our
calculations, and similarly foZ.

Remark 2. The content of our theorem is along the lines: convergence plus consiste
implies the limit solution satisfies the original differential equation. Here, this amounts
showing that the jump conditions in Eqgs. (12) and (13) are satisfied and that Egs. (10)
(12) are true in regions of smoothness.

Remark 3. The Lax—Wendroff Theorem states that a converged solution is a we
solution. Thus one has to believe their results have or will converge with further grid
finement. Our theorem requires this as well as the requirementZttads jumps only
whereu is differentiable and that the approximationsutare uniformly bounded it
whereve is differentiable, with similar requirements @hand its approximations. One
has to believe that no singularities will appear and violate these hypothesis as the g
refined. This is in the spirit of the Lax—Wendroff Theorem, i.e., if it has not happen
on the finest computational grid (lack of apparent convergence, or in our case, sing
ities in the wrong places), then one can quote the appropriate theorem to justify cor
gence.

Remark 4. For an arbitrary system of conservation laws to have the decompositior
Egs. (10) to (13), it is necessary that one of the eigenvalues of the Jacobian matrix in
dimension bgu, v, w), respectively, each repeated at laasimes. This is, of course, only
a hecessary condition.

Remark 5. Our main theorem may appear to contradict some prevailing wisdom. |
example, in [16] the authors state that the advection Eq. (11) “does not hold a priori ac
ashock.” This s, of course, generally true, but we have proven that it does hold in our s
if Z remains continuous there.

Proof. Let (X, y,t) be aC}(R? x R*) function. We multiply Egs. (14) and (15) by
@(Xi, ¥j, t") and use the summation-by-parts idea in the proof ot tétheorem, arriving
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at
: . tn _ . . tn—l
ZAtAxAy{qinj (‘/’(X“yw ) =% Yi, ))
£ ’ At
I,J,n
¢ (X1, Y5, ") — @ (Xi, y;, t")
+ Filiqj( AX
(P(Xi ’ yj+l9 tn) - ‘P(Xi ’ ny tn) _
+G{jj+%< Ay -0 (16)
and

At

Z AtAXAy{Z.W (‘P(Xis yi- t") — o (X, y,—,t”—l))
1)

i,j,n

; Ul @ (Xi+1. Y5 1) — Ul je(xi, yj. 1)
j AX

+20 (”ﬂHM(Xh Yirn 1) = vlie (%, v, 1) )} —0,

ij+3 Ay a7

We let At, Ax, Ay — 0 for the converging subsequence. From Eq. (16), exactly as
the proof of the Lax—Wendroff theorem (which uses the Lebesgue dominated converg
theorem, the Lipschitz continuity of the flux functions, consistency, and the fact that

lim v(x+h) = v(x) (18)

a.e. for bounded measurable functienswe have

/ et + fo+09py =0 (19)
R2x Rt

for any such test functiog. This, of course, implies thatis a classical solution of Eq. (10)
whereverg andZ are smooth and thatandZ satisfy Eq. (12) at jumps.
Next we use the identity

Ul o (Xis, v, 1) — Ul o (X, vy, t7)
AX

T <¢’(Xi+1a yi t") — (X, Yj’tn)> " <uin+1,j — U7

X X >‘P(Xi7 yj.t")  (20)

and the analogous identity involvingdivided differences. Choosge to have support in
a region2 in which u is differentiable. We letAx, Ay, At — 0 along the converging

subsequence. Using Egs. (17) and (20), the Lebesgue dominated convergence theore
the usual Lax—-Wendroff argument we arrive at

/ Zoi+Z(U- Vo) + Z(V - u)p = 0. 1)
RZ2x R+

If Z is differentiable ine2, a simple integration by parts gives us

/(p(Zt—i—u-VZ):O (22)
Q
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for any suchyp, henceZ is a classical solution of (11) if2. If Z has a jump we take to
be a sphere centered at a point of discontinuity. We then let the radius of the sphere
zero in Eq. (21) and obtain the jump conditions in Eq. (13) in a standard fashion.

We may proveZ is a classical solution whem jumps with the help of the dominated
convergence theorem arriving at Eq. (22) in a straightforward fashion.

3. LEVEL SET EQUATION FOR COMPRESSIBLE FLOW

Consider the one-dimensional Euler equations with the level set equation in conserv:
form

p pU
pu pu? + p

+ = 0, 23
E (E+ pu 23)
re/ pug

X

wherep is the densityu is the velocity,E is the total energy per unit volume, is the
pressure, ang is the level set function. Another alternative, as suggested in [18], is
replace the conservative level set equation (4th equation) with the level set equatic
quasilinear or advection form

¢t + Uy =0 (24)

noting thatgp is valid in advection form since the values@fire meant to advect with the
particle velocityu, i.e., along streamlines.

3.1. Projection into Characteristic Fields

Modern shock capturing schemes are often based on projection into characteristic fi
Usually the value of the left eigenvector of the Jacobian matrix is frozen and used to loc
decompose the system. Consider the Euler equations with the level set equation in adve
form. Projection by a left eigenvectdr,= (I, |5, I3, 14), leads to

p U
pu

(1,12, 13, 14) £ + |yl 1) | pu2+p + laupy =0, (25)
¢/ (E+pu/ ],

where it is obvious that the spatial part of this equation cannot be written in conserva
form. In order to obtain conservation form for the projected equation one needs to us
conservative version of the level set equation so that projection by a left eigenvector |
to

P pu
pu u?+

(I1, 12,13, 14) £ + | (1, 12,13, 19) ('OE 4 p)KIJ =0 (26)
r/ ], pug

in conservation form. For this reason, the level set equation is written in conservation f
when formulating the Jacobian matrix and the associated eigensystem.
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3.2. Conservative Eigensystem

The total energy is the sum of the internal energy and the kinetic energy,

uZ
E—pet %, @27)
wheree s the internal energy per unit mass. The pressure can be writtea-g5p, €, ¢)
with partial derivativesp,, pe, and p,. Alternatively, considering the pressure ps=
p(p, pu, E, p¢) allows one to write the partial derivatives of the pressure with respe
to the conserved variables as

ap dPy

—=H-=2, H=c-TH-u) (28)
ap p
P __ 9 _
S ru, °E = r (29)
a_p: Py (30)
App)  p’

where the Gruneisen coefficient, the sound speed, and the total mixture enthalpy are de

by
I
r=" ¢ /p+P (31)
p o

(32)

The partial derivatives of the pressure are used to obtain the Jacobian matrix

0 1 0 0
~W@H+H-®  2u-Tu T B
. ’ (33)
—uH+uH —“P H_ru? u4Tu =
—Uu¢ 1) 0 u
and the associated eigensystem
1 1
Ri— [ Y€ R? = i 34
[ H-uc|’ T H-% (34)
¢ ¢
1 0
RI= | YTt€© N (35)
H+uc |’ -
¢ 1
b, u  ¢py —biu 1 by py
L= (24— 2, e . 36
(2 + 2c  2pc?’ 2 2c’ 27 2pc? (36)



310 FEDKIW, MERRIMAN, AND OSHER

12— (1—-by+ 2P byu, by, — P2 (37)
pC? pC?
b, u ¢p, —bu 1 by py
3= (2 — %% — = 38
(2 2c  2pc?’ 2 2c’ 2’7 2pc? (38)
L4 = (—¢,0,0,1), (39)
where
b= "2 by=1+bu?—biH. (40)
pC

3.3. Numerical Method

When discretizing along the lines of [22], the left eigenvectors are used to project |
the characteristic fields, the scalar flux in each characteristic field is discretized base
the associated eigenvalue in that field, and the right eigenvectors are used to projec
of the characteristic fields. Then the contributions from each characteristic field are ac
together to produce the total vector flux at a cell interface. These vector fluxes are differe
in the usual manner resulting in a fully conservative numerical method.

In order to correctly project into the characteristic fields, the full left eigenvector is alwe
used. However, since conservation form is not required for the last equation, i.e., the |
set equation, only the first three components of the right eigenvectors are used to proje
of the characteristic fields. The level set equation is discretized independently in adve
form, noting that its characteristic information is determinediland that nothing about it
need be conserved.

Consider the Ghost Fluid Method, developed in [5], whpges identically zero. The
minimal system no longer depends on the level set equation and only the first three col
nents of the first three left and right eigenvectors are needed to update the minimal sy
That is, the one dimensional Euler equations can be discretized with a standard cons
tive scheme while the level set equation is independently discretized in advection form.
both one- and two-dimensional computational results along with comparisons to the €
solutions, see [5].

4. CHEMICALLY REACTING FLOW

Consider the two-dimensional thermally perfect Euler equations for multi-species f
with a total of N species,

Ut + [F(W)]x + [G(V)]y =0, (41)
) pu pU
pu pU®+ p puv
pU puv ov? + p
U= E ., FUW=|(E+pu|, GU=|(E+pv (42)
pY1 puYp pvYq
PYN_1 PUYN_1 PVYN_1,
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2 2 T
E=—p+M (ZYI ) hi(T):hif+/ Cpi(s)ds, —(43)
0

wheret is time,x andy are the spatial dimensionsis the densityy andv are the velocities,
E is the energy per unit volumg; is the mass fraction of specigsh; is the enthalpy per
unit mass of specieis hif is the heat of formation of speciégenthalpy at ), cp; is
the specific heat at constant pressure of spegiesid p is the pressure [7]. Note that
Yn=1- Ei’\':‘ll Y;. The pressure is a function of the density, internal energy per unit me
and the mass fractiong,= p(p, €, Y1, ..., Yn—1), with partial derivatives,, p. and py,
whereE = pe + p(u? + v?)/2 defines the internal energy per unit mass.

The eigenvalues and eigenvectors for the Jacobian matfigd)fare obtained by setting
A=1 andB =0 in the following formulas, while those for the Jacobian matri>GgfJ)
are obtained by setting =0 andB = 1.

The eigenvalues are

M=0-c, AN =0+c (44)

W=...=N2 (45)

wherel is repeatedN + 1) times.

The standard construction of upwind difference schemes requires the full eigensy
of the Jacobian matrix df evaluated as some intermediate valu&JofWhen this Jacobian
matrix has a repeated eigenvalue, this involves finding a basis for the associated eigen
which can be complicated for systems with high multiplicity. The complementary project
method (CPM) is an alternative approach where full upwinding is accomplished with
the use of the eigenvectors in the repeated eigenvalue field. Suppose thefishvalues
are repeated, then the correspondndimensional characteristic subspace is the span

(L1, ...,LP). The remaining left and right eigenvectors can be used to define
fK=LK.F (46)
and write
n
F=F+ > f"R¥, (47)
k=p+1

where the vectotF can be upwinded according to the sign of the repeated eigenva
A=A2%... =P, and no basis need be chosenfarFor more details on the CPM, see [6].

The CPM requires the first ar(dN + 3)rd left and right eigenvectors for the chemically
reacting flow example considered here. In addition, since the minimal conservative sy:
is the two-dimensional Euler equations, only the first four entries of the right eigenvec
are needed. The necessary left and right eigenvectors are

b2 1] b3 b]_U A blv B b]_ —b]_Zl —blzN_l
=2+ 2= 2 _ =" 48
(2+2 2 "2 T T2 T2 2 2 ) (48)
L N+3 _ b 0 %_bl_u ﬁ_@ E,E,_blzl,m’_blz'\‘*l (49)
2 2 2 2 2c 2 2c 2 2 2
1 1

1| u=-=Ac N+3 | Ut Ac

R = v—Bc |’ R = v+ Bc |’ (50)

H —Gc H +(c
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where the unnecessary terms in the right eigenvectors have been omitted for brevity &

g2 = u? 4 v?, 0= Au+ By (51)
E
c=\/m+tr H=""P (52)
P p
b= 2 bp=1+big?—biH, (53)
oC

N-1

bs=by > Yz, z=—P% (54)
i=1 Pe

4.1. Numerical Method

The two left eigenvectors are used to project into the two nonlinear fields, while only
first four entries of the right eigenvectors are used to project out of these fields. The C
is used to construct the complementary subspace

pu

2
F=|r u+ P | Z LIFU)R! — LN*BFU)RNS, (55)
puUv

(E+ pu

whereF has length four and each of its component can be upwind differenced in the upw
direction determined by. The resulting flux is combined with the flux contributions fromn
the two nonlinear fields to yield the net numerical flux for the first four entrielS(of).
These fluxes are differenced in the usual manner to get the proper upwind conserv
discretization for the first four equations, i.e., for the minimal system. For a dimens
by dimension discretization, the same procedure is applied to the flux in the other sp
dimension, and then the total spatial contribution can be used with a TVD Runge K
method to update the first four equations of the system, i.e., to update the minimal sys
The advection equations for the mass fractions

Y1 Y1 Y1
ol +ul s |40 2 | =0 (56)

YN-1 YN-1

YN-1 « -y

t
are discretized independently in an equation by equation fashion noting that the chare
istic information for thex andy derivatives is determined hyandv, respectively, and that
nothing need be conserved.

4.2. Examples

Several of the examples from [4, 7] were recomputed using the nonconservative flux b
method outlined in this paper. Overall, the calculations using the new technique agreed
with the old calculations. One particularly difficult example from [7] is repeated here.

Consider a 0.12 m domain with a shock wave located=e0.06 m traveling from right
to left in a 2/1/7 molar ratio of H/O,/Ar where all gases are assumed to be thermal
perfect and a full chemical reaction mechanism is employed as discussed in [7]. The ir
data for the shock wave consist pf=.072X4, u= 0% andp=7173 Pa on the left with

e
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FIG. 1. Fully conservative method.

p=.18075%, u=-487347, and p=35594 Pa on the right. A solid wall boundary
conditionis applied at = 0 m and the shock wave reflects off this wall changing its directic
of travel. As this shock wave passes over the gas a second time, the gas is heated e
to initiate chemical reactions. After a suitable induction time, a chemical combustion w
forms at the wall and travels to the right eventually overtaking the shock wave resul
in the formation of three waves. From left to right, there is a rarefaction wave, a con
discontinuity, and a detonation wave.

Figure 1 shows the solution at 238 with 400 uniform grid cells and 2300 equal time
steps using the fully conservative ENO-RF method outlined in [7]. Figure 2 shows the si
calculation using the nonconservative flux based ENO method (outlined in the Appen
for the mass fraction equations. The CPM [6] was used in both calculations. In [7],
was shown to be a very sensitive problem, and the good agreement of the two methc
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promising. The only major difference is in the height of theH@ak, although this seems

FIG. 2. Nonconservative flux based algorithm.

to have no effect on the rest of the solution.

A grid refinement study was carried out with 100, 200, 400, 800, and 1600 grid ¢
using 575, 1150, 2300, 4600, and 9200 time steps, respectively. Figure 3 shows the re
with the fully conservative scheme while Fig. 4 shows the results with the nonconserve
flux based method for the mass fraction equations. The position of the lead detonation
converges with first order accuracy for both numerical algorithms. In addition, the pe
in the HG, mass fraction seem to converge more uniformly (i.e., monotonically) for t
nonconservative flux based method. Figures 5, 6, and 7 compare the two methods with
400, and 1600 grid points, respectively. The fully conservative method is plotteckiwith

while the nonconservative flux based method is plotted wigh
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den OH mf
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FIG. 3. Fully conservative method.

5. BN TWO PHASE EXPLOSIVES MODEL

Consider a simplified version of the one-dimensional Baer—Nunziato (BN) two ph
explosives model [1, 3, 10, 2] that ignores nozzling and source terms

Padg PgUgPy
PgUgdg (PgUG + Pg) g

Eqdg (Eg + Pg)Ugdg

PsPs + PsUss =0, (57)
PsUsos (psu§ + ps)¢s

Esds (Es + Ps)Usds

Ps t PsUs
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den OH mf
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FIG. 4. Nonconservative flux based algorithm.

wheret is time, x is the spatial dimensiong, ug, Eg, pg, andgg are the density, velocity,
energy per unit volume, pressure, and volume fraction of the gaspang, Es, ps, and
¢s are the density, velocity, energy per unit volume, pressure, and volume fraction of
solid. The seventh equation is the compaction equation which is used to close the sy
along with the saturation conditiotts + ¢4 = 1. Assuming that neither phase has any me
terial strength, the pressure of each phase is a function of the density and internal et
per unit mass of that phaspg = py(pg. &) and ps = ps(ps, &), with partial derivatives
(Ps) ps> (Ps)e, (pg)pgy and(pg)eg where Eg =19 + ngS/Z andEs = ps&s + Psug/z de-
fine the internal energies per unit mass. In addition, assume that the equations of sta
defined in a manner consistent witpg) ,, = Pg/pg and (ps),, = Ps/ps as identities. A
more detailed version of the model is considered in [8].
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den OH mf
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FIG.5. The 100 grid cellsx, conservativeQ, nonconservative.

Under the above assumptions, the eigenvalueag@recy, Ug, Ug 4 Cg, Us — Cs, Us, Us +
Cs, andug, with corresponding left and right eigenvectors

by ug —bygu 1 b
Li=(=2 42 299~ 290000 58
( 2 ° ¢, 2 2cy” 2 (58)
2 = (1 — byg, bigug, —yg, 0,0, 0, 0) (59)
bzg Ug —blgug 1 blg
& T o T ,0,0,0,0 60
2 2 2 2 e 2 (60)

0,0,0, = —

bZS Us blsus 1 blS
( T2 2 2cs’2’0> (1)



318

FEDKIW, MERRIMAN, AND OSHER

den OH mf
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FIG. 6. The 400 grid cellsx, conservative(, nonconservative.
L® = (0,0,0, 1 — by, bisus, —bss, 0) (62)
b2 u —bl u 1 b1
L°=(000 =-= ——24+ — =0 (63)
2 2Cs 2 2cs 2
L"=(0,0,0,—1,0,0, ¢s) (64)
1 1 1
Ug — Cg Ug Ug + Cg
g
R! = 0 . R’= 0 , R= 0 (65)
0 0 0
0 0 0
0 0 0
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FIG. 7. The 1600 grid cellsx, conservative, nonconservative.

0 0 0
0 0 0
0 0 0
RY— 1 . R°= 1 . R°= 1 (66)
Us — Cs Us Us + Cs
Hs — UsCs Hs — b—i Hs + UsCs
1
95 i i
R’ = (67)

S oo oo oo
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Ig = (pg)eg \/(pg)pg (68)
re= (ps)es = /(o + Fs Ps (69)

Eq + Es +
Hy = g pg H = == Ps (70)
Py Ps
r
blg = C—g, b29 =1+ b]gUé — blg Hg (71)
g
r
bls = C_ZS’ bZS =1+ blsug - bls Hs~ (72)
S

5.1. Numerical Method

The seven left eigenvectors are used to project into the characteristic fields, while onl
first six entries of the seven right eigenvectors are used to project out of these fields, ¢
the minimal system consists of the first six equations. This avoids the common divi:
by zero problem introduced by the seventh term in the right eigenvectors, i.e./¢he !
term. This term blows up when a chemical reaction deplgteto zero and has forced
unphysical modeling, e.g., solid cores [10], to avoid the problem. (Another method use
avoid this problem involves the use of central schemes [17, 19].) In [8], a priori knowlec
that the seventh entry of the right eigenvectors could be discarded motivated manipul:
of the eigensystem in a manner that forces this division by zero problem into that loca
eliminating it entirely.

The volume fraction evolution equation

(¢s)t + Us(¢s)x =0 (73)

is an advection equation, and it can be discretized independently noting that the characte
information is determined bys and that nothing need be conserved.

5.2. Examples

In [10], a conservation law for the number of particles per unit volume
N + (Usn)x =0 (74)

was added to the one-dimensional BN model. Inclusion of Eq. (74) leads to a new w
hyperbolicity whenps = 0 due to the “blow-up” of the resulting/ ps¢s term in the eigen-
system. See [10] for details.

Using the continuity equation for the solid, Eq. (74) can be rewritten in advection for

n n
s =0, 75
<Ps¢s)t+u (Ps¢s>x ( )

where the advected quantity is the number or particles per unit mass. This quantity b
up as the chemical reaction proceeds to completion, i.eis as 0. Sincen is defined as
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the volume fraction divided by the particle volume

_ s
n= v (76)
Eq. (75) is equivalent to
1 1
+u =0 77
<Psvp>t S(ﬂsvp>x )

which blows up whev/, — 0.

The problem with Egs. (74), (75), and (77) is that they are all derived by advectin
quantity that blows up as the reaction proceeds to completion. This can trivially be avo
by advecting an equivalent quantity that vanishes as the reaction proceeds to completic
the number of particles per unit mass blows up, the mass per particle vanishes. Repl
Eq. (75) with

(psVp)t + Us(psVp)x =0 (78)

and solving this equation in advection form removes the weak hyperbolicity. All that reme
are some decoding errors that occur when computingm Eq. (76), although is no longer
needed to solve the system. If conservation form is preferred, then Eq. (78) can be coml
with the continuity equation of the solid to obtain

(Psz¢svp)t + (Uspsz¢svp)x =0 (79)

which can be substituted in place of Eq. (74) resulting in an eigensystem that conta
well behavedpsV, term instead of a poorly behavedps¢s term.

In Fig. 8 we repeat a simple shock tube calculation from [10] using Eq. (78) for the m
per particle to replace the conservation equatiomdee use a 10 m domain with 200
grid cells and a final time of 0 006 s. Initiallyg = ps = 10 %9 and Pg= ps=1.0 x 10° Pa
on the left, whilepg = ps= 1k 3 and pg=ps=1.0x 105 Pa on the right. In addition,
Ug=Us=07T, ¢s=0.7,andn =119 x 101”’6"“'es everywhere. Both the solid and the ga:s
phase are assumed tooley: pRT ande= cUT with Ry=Rs = 287k g (C)g= 718|< Ko
and €,)s = 239 - The results compare well with those from [10] Where the conservatl
equation forn Was used. Note that the solution for the mass per particle variable o
contains a simple contact discontinuity propagating to the right, while the solutions for
particle volume variable and the number of particle per unit volume variable both con
shocks and rarefactions.

APPENDIX A: CENTRAL SCHEMES

The examples in this paper were discussed based on an upwind discretization with e
vector projections. In this appendix, a central discretization is briefly discussed. See [17
for examples of central schemes.

Consider the one-dimensional Euler equations &igatisfying the following advection
equation

Zi+uz,=0 (80)
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den(g) vel(g) x10°  ene(g)
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FIG. 8. BN calculation.
which can be placed into conservation form along with the Euler equations
o pu
2
pu us +
PP o 81)
E (E+ pu
pZ t puzZ

X

and discretized equation by equation with a central scheme. The new technique pres
in this paper would not alter the central discretization of the Euler equations, but Eq. |
would be discretized in nonconservative form instead of

(pZ)i + (puZ)x =0 (82)
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in conservation form. Equation (82) requires artificial numerical dissipation proportiona
the maximum ofu + c| and|u — c| when discretizing with a central scheme since itinclude
the continuity equation by construction. Moreover, shocks and rarefactions can ogur in
In contrast, Eq. (80) does not require this (possibly large) numerical dissipation and t
are no shocks or rarefactionsn

APPENDIX B: ADVECTION EQUATION DISCRETIZATION
Consider an advection equation of the form
Zi+uZy+vZy =0, (83)

where Z is the advected quantity andand v are the particle velocities in the andy
direction, respectively. Nonconservative flux based discretizationg,fare given below.
Z, is discretized in a similar fashion and then these two terms are combined aittlv

at each grid node before applying a 3rd order TVD Runge Kutta method [9, 22] for ti
integration.

B.1. Nonconservative Flux Based ENO Discretization

A nonconservative extension of the ENO-Roe discretization is used, since there ar
nonlinear waves such as shocks and rarefactions [9, 22].
The numerical flux functior is defined through the relation

F
(Zy)i =

F

1

=, (84)

i+~

AX
where theF 11/, are the values of the numerical flux function at the cell walls. The numeri
flux function is constructed at the cell walls by considering the primitive funckioof
another functiorh, whereh is identical to the numerical flux functiof at the cell walls.

H is calculated at the cell walls with polynomial interpolation. The zeroth order divid
differencesDiOH/z, and all higher ordegvendivided differences oH exist at the cell walls
and have the subscript: % The first order divided difference®! and all higher order
odddivided differences of exist at the grid points and have the subsaridote that the
zeroth order divided differences &f vanish with differentiation and are not needed.

The first order divided differences &f are

D!H = Z (85)
and the higher divided differences are

1 1
2 1 3 2
DI+%H:§DI+%Z’ DIH:§DIZ (86)
Consider a specific grid poirg. If uj, =0, then settingZy);, = 0 will be algorithmically
correct sincgu Zy);, = 0 is desired, otherwise,, determines the upwind direction.
The associated numerical flux functidf, 1> is defined as follows: I, > 0, then

k=io. If uj, <0, thenk=ig+ 1. Define

Qu00) = (DEH) (X = X013 87)
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If ID§_4,,H| <IDg,1,H|, thenc= Df ; ,H andk* =k — 1. Otherwise¢ = D¢, ,H and
k* =k. Define

Q2(x) =c<x—xk_%><x—xk+%). (88)

If ID2H| <|DZ,,H|, thenc* = D& H. Otherwisec* = D2, ., H. Define

Qsz(x)=c" (x — xk,_%> (x — Xk*+%> (x — Xk*+%>' (89)
Then

Fiort = DitH +c(2(i0 — k) + D) AX + ¢* (310 — k") — 1) (AX)2. (90)

io+3

Likewise, the associated numerical flux functigg_,» is defined as follows: 1é;, > 0,
thenk=ig — 1. If uj, <0, thenk=i,. Define

Qu(0 = (DEH) (x = x,3). ©1)

If IDE_1,,H| <|Dg,,H|, thenc=D§ , ,H andk* =k — 1. Otherwise¢ = Df, ; ,H and
k* =k. Define

Q2(x) =c<x—xk_%)(x—xk+%). (92)

If IDEH|IDZ,H|, thenc* = D H. Otherwisec* = D3, H. Define

Qs(x) =c" (x - xk,,%) (x - xk,+%) (x - Xk*+§)- (93)
Then

F

1
lo—3

= DIH 4 ¢(2(0 — 1— K) + DAX + ¢ (3o — 1 — k2 — 1(AX)Z.  (94)

Finally, (Zy)i, is given by Eq. (84).

B.2. Nonconservative Flux Based WENO Discretization

Consider a 5th order WENO scheme with the paramef&R]. Large values oé cause
the stencil to be biased toward central differencing (causing oscillations), while small va
of € cause the stencil to be biased toward 3rd order ENO (lowering the order). To g
stencil biased toward the fifth order flexs defined as

€ = 10 ®max{v?, v3, v, v, v5} + 10°%, (95)

where 10%° is used to avoid division by zero and should be much smaller than the f
term in most regions of the domain.

Consider a specific grid poiig. If uj, =0, then settingZy);, = 0 will be algorithmically
correct sinc&u Zy )i, =0 is desired, otherwise,, determines the upwind direction.



SYSTEMS OF HYPERBOLIC CONSERVATION LAWS 325

The associated numerical flux functidfy,, 1> is defined as follows: I;, > 0, then
v1 = Zig—2, V2 = Zjy—1, V3 = Zjy, V4= Zijy41,aNts = Zj 1o. If Uj; < 0, thermv; = Zj 13, vo =
Zigt2, V3= Zig41, V4= Zj,, andvs = Z;_1.

Define the smoothness

13 1
S = 50— 20+ v9)7 + (1 — 4z + 303)° (96)
13 1
S = 1—2(1)2 — 2v3+ U4)2 + Z(U4 - U4)2 (97)
13 1
S =—(v3—2v4+ U5)2 + —(Buz — 4vg + U5)2 (98)
12 4
and the weights
1 1 a
a o~ 9 = T < 99
1T 106+ T atatas (59)
6 1 =Y
pe o L % 100
2T106e+9?2 P mtatas (109
3 1 ag
S N - & 101
TI0e+ 9?7 T atata -

to get the flux

U1 7U2 1 1v3 —UV2 51)3 V4 v3 51}4 Us
F — - — — 4+ — )+ —— 4+ — 4+ — | + — 4+ — — = .
fot-3 wl( 3 6 6 w2 6 6 3 ws 3 6 6

(102)

Likewise, the associated numerical flux functigp_1, is defined as follows: 16;, > 0,
thenv, = Zi0_3, Vp= Zio—27 V3= Zio—lv V4= Zio, andvs = Zi0+1. If Ui, < 0, therw, = Zi0+2,
V2= Zio+l9 3= Zios Vg = Zio—11 ande = Zio—2'

Then the smoothness, weights, and flux are defined exactly as above yielding

vy fva 1lus —vp2 bBuz s v bus vs
Fio—%—wl(??*?)*”(?*?*?)+“’3<§+?‘€)' (103)

Finally,

L _F
(Z0)i, = % (104)
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