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The high speed flow of complex materials can often be modeled by the compress-
ible Euler equations coupled to (possibly many) additional advection equations. Tra-
ditionally, good computational results have been obtained by writing these systems
in fully conservative form and applying the general methodology of shock-capturing
schemes for systems of hyperbolic conservation laws. In this paper, we show how
to obtain the benefits of these schemes without the usual complexity of full char-
acteristic decomposition or the restrictions imposed by fully conservative differenc-
ing. Instead, under certain conditions defined in Section 2, the additional advection
equations can be discretized individually with a nonconservative scheme while the
remaining system is discretized using a fully conservative approach, perhaps based
on a characteristic field decomposition. A simple extension of the Lax–Wendroff
Theorem is presented to show that under certain verifiable hypothesis, our noncon-
servative schemes converge to weak solutions of the fully conservative system. Then
this new technique is applied to systems of equations from compressible multiphase
flow, chemically reacting flow, and explosive materials modeling. In the last instance,
the flexibility introduced by this approach is exploited to change a weakly hyper-
bolic system into an equivalent strictly hyperbolic system, and to remove certain
nonphysical modeling assumptions.c© 2000 Academic Press

1. INTRODUCTION

It is widely believed that numerical methods for discretizing the Euler equations should
have discrete conservation of mass, momentum, and energy as well as an entropy fix for
low viscosity schemes. Conservative schemes have limit solutions which are weak solutions
of the Euler equations yielding accurate representation of the shock speeds and jumps. In
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contrast, nonconservative schemes generally give limit solutions which have incorrect shock
speeds and/or jumps, e.g., see [15]. Note that the work in [13] derived and used special
viscosity terms that mimic the Navier–Stokes viscosity in order to reduce these types of
nonconservative errors.

As models become richer in physics and mathematics, more and more equations are
added. Some common examples are the addition of mass fraction equations for chemically
reacting flow [7] and the addition of the level set equation for compressible gas flow [18].
Another example is the Baer–Nunziato (BN) two phase model for solid explosives and
propellants [1], where a second set of Euler equations is added for the solid phase, and
a volume fraction equation is added to close the system. In addition, the chemical source
terms of the BN model require the addition of many more equations, not all of which are
known or agreed upon by the community [10, 2]. As new conservation laws are added to
the Euler equations, the Jacobian matrix required for upwind schemes grows accordingly,
usually becoming large and unwieldy.

For a given system one can often identify a minimal conservative system that contains
the truly nonlinear fields. In the chemically reacting flow model and the level set model the
Euler equations are the minimal system containing the sound waves. It will be shown that
both the mass fraction equations and the level set equation can be written in advection form
and upwinded separately according to the particle velocity without degrading the quality of
the numerical solution. In fact, the resulting solution is as good, if not better than the fully
conservative method. In the BN model, the minimal conservative system consists of the two
sets of Euler equations which contain the truly nonlinear fields for both the gas sound waves
and the solid sound waves. The volume fraction equation and the extra equations added for
chemical source terms will be put into advection form and upwinded separately according
to the appropriate particle velocity (gas or solid). Note that the BN system differs from the
first two examples, where the minimal system was only the Euler equations and all added
equations were put into advection form. The reason for this difference is that the second set
of Euler equations, added to model the solid, contains quantities which have jumps that are
not advected along streamlines, e.g., shock waves in the solid.

One often adds new advection equations of the form

Zt + uZx = 0 (1)

to the minimal system. The continuity equation is

ρt + (ρu)x = 0, (2)

whereρ is the density andu is the velocity. Multiplying Eq. (1) byρ and adding it toZ
times Eq. (2) results in

(ρZ)t + (ρZu)x = 0 (3)

as a new equation in conservation form. If the correct Rankine–Hugoniot jump conditions
of the full system are such that discontinuities inZ are advected along streamlines then the
technique introduced in this paper applies. This is the case for the mass fraction equations,
the level set equation, and the volume fraction equation of the BN model, but not the case
for the second set of Euler equations in the BN model which must be added to the minimal
system. As a further illustration, consider

St + uSx = 0, (4)
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whereS is the entropy per unit mass. While this equation is valid away from shocks, discon-
tinuities in S are not necessarily advected along streamlines and the technique introduced
in this paper does not apply. The advection of discontinuities inZ along streamlines can be
made more precise by considering a discontinuity moving with speedD. The well known
jump conditions for Eqs. (2) and (3) are

ρleft(uleft− D) = ρright(uright − D) (5)

and

ρleftZleft(uleft− D) = ρright Zright(uright − D) (6)

which can be combined to obtain

ρright(Zleft− Zright)(uright − D) = 0 (7)

illustrating thatZ must be continuous, unlessuright= D= uleft. That is, discontinuities of
Z move with the particle velocity. MoreoverZ is continuous across shocks. Note that these
statements are generally not true for the entropy.

There are two distinct kinds of advection equations which may be added to a minimal
system. The first kind advects quantities that the minimal system depends on; examples
include dependence of the pressure on the mass fractions, the level set function, or the
volume fraction. The left and right eigenvectors of the Jacobian matrix are needed in order
to use an upwind scheme. These types of advection equations dictate an increase in the
size of the left eigenvector, since information is needed from these variables to accurately
project into the characteristic fields. However, the right eigenvector remains the length
of the minimal system, since only the minimal system is updated using the characteristic
fields, while the advection equations are updated individually. The second kind of advection
equation advects those quantities that the minimal system doesnotdepend on, even though
the new equations may be dependent on the minimal system for their characteristic velocity.
These types of equations occur in newer models such as the BN equations where the
advected quantities have been added in order to model the chemical source terms. These
advection equations have no effect on the hyperbolic part of the minimal system and do not
change the eigensystem at all, i.e., neither the right nor left eigenvector of the associated
Jacobian matrix of the minimal system changes. Here the savings in simplicity of scheme
design and programming effort are enormous using our technique rather than standard
conservation form discretizations, because one only needs to discretize simple additional
advection equations. There are also significant gains in execution time.

In Section 5, a conservative equation that introduces a weak hyperbolicity in the BN
model (which implies that the problem is mildly ill-posed) is discussed. In this instance, the
identification of a quantity with discontinuities that advect along streamlines is extremely
useful since the conservative equation is equivalent to advecting a quantity which blows up
analytically as the reaction proceeds to completion. This problem is easily fixed by advecting
an equivalent quantity which goes to zero as the reaction proceeds to completion. Further-
more, putting this well behaved advection equation into conservative form and solving in
the usual way removes the weak hyperbolicity for the full conservation form as well.

Once the advection equations are isolated from the minimal conservative system, greater
flexibility in scheme design can be exploited. If the advected quantity is continuous, e.g., the
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level set function, then one can use high order essentially nonoscillatory (ENO) Hamilton–
Jacobi methods which gain an order of accuracy at extrema over the conservative ENO
flux method and are also somewhat easier to implement [21, 11]. If the advected quantity
is discontinuous, our theoretical and numerical results indicate that nonconservative flux
form is preferable. That is, we recommend that the spatial term of

Zt + uZx = 0 (8)

be approximated as

uZx ≈ ui

(
Ẑi+ 1

2
− Ẑi− 1

2

)
1x

, (9)

where Ẑi+1/2 can be viewed as a numerical flux function consistent withZ. For discon-
tinuous advected quantities, the contact discontinuities can be sharpened with artificial
compression methods [22]. In fact, isolating the advection equations in a flux form that
allows nonconservative flux differencing opens up new research avenues such as the pursuit
of a fully multidimensional artificial compression method, which could not be carried out
as easily with conservative numerical methods.

2. THEORETICAL JUSTIFICATION

The general theorem concerns the following system of equations inR3× R+

qt +∇ · f(q, Z) = 0 (10)

Zt + u · ∇Z = 0, (11)

wheref= ( f, g, h) andu= (u, v, w). Note thatq, f, g, andh are alll vectors whileZ is
anm vector. In regions of smoothness, we assume that Eqs. (10) and (11) are equivalent to
a conservative system havingl +m dependent variables and that the jump conditions for
the conservative system are

[f · N] = D[q] (12)

[Z](u · N− D) = 0, (13)

whereN is the unit normal to the surface of discontinuity, andD is the local discontinuity
speed in the normal direction. For simplicity of exposition only we considerR2× R+ in
the following.

We approximate the system using the conservation form for theq variables and the
nonconservative flux based form for theZ variables. Thus we have

qn+1
i, j = qn

i, j −
1t

1x

[(
Fn

i+ 1
2 , j
− Fn

i− 1
2 , j

)
+
(

Gn
i, j+ 1

2
− Gn

i, j− 1
2

)]
, (14)

whereFn
i±1/2, j andGn

i, j±1/2 are Lipschitz continuous numerical flux functions consistent
with f (q, Z) andg(q, Z), respectively. We also have

Zn+1
i, j = Zn

i, j −
1t

1x

[
un

i, j

(
Ẑn

i+ 1
2 , j
− Ẑn

i− 1
2 , j

)
+ vn

i, j

(
Ẑi, j+ 1

2
− Ẑi, j− 1

2

)]
, (15)

whereẐn
i±1/2, j and Ẑn

i, j±1/2 are Lipschitz continuous flux functions consistent withZ.
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We make the following assumptions: Suppose, as1t,1x,1y→ 0, a subsequence of
the approximate solutions generated by Eqs. (14) and (15) is bounded a.e. convergent to a
piecewise differentiable limit,(q, Z), for whichZ has jumps only whereu is differentiable.
In addition we assume that the first divided differences inx and y of these approxima-
tions un

i, j andvn
i, j are uniformly bounded by an integrable function in any compact set

Ä⊂ R2 for which the limit solution(u, v) is differentiable, i.e.,un
i, j andvn

i, j are each uni-
formly bounded inW1,1(Ä), and that similar statements are true forZn

i, j in any compact
setÄ′ ⊂ R2 for which the limit solutionZ is differentiable. Then we have the following
result:

THEOREM 1. The piecewise differentiable limit(q, Z) is a weak solution of Eqs.(10)
and(11), i.e., it is a classical solution when it is differentiable and it satisfies Eqs.(12) and
(13) at jumps.

Remark 1. Our assumptions are considerably stronger than those of the classical Lax–
Wendroff theorem [14] which requires only bounded a.e. convergence. Nevertheless, in
our calculations in this paper (and elsewhere) using this method, we have observed that
our assumptions were valid. In fact the divided differences of the approximations tou
were always uniformly bounded away from the discontinuities of the limitingu in our
calculations, and similarly forZ.

Remark 2. The content of our theorem is along the lines: convergence plus consistency
implies the limit solution satisfies the original differential equation. Here, this amounts to
showing that the jump conditions in Eqs. (12) and (13) are satisfied and that Eqs. (10) and
(11) are true in regions of smoothness.

Remark 3. The Lax–Wendroff Theorem states that a converged solution is a weak
solution. Thus one has to believe their results have or will converge with further grid re-
finement. Our theorem requires this as well as the requirement thatZ has jumps only
whereu is differentiable and that the approximations tou are uniformly bounded inW1,1

whereveru is differentiable, with similar requirements onZ and its approximations. One
has to believe that no singularities will appear and violate these hypothesis as the grid is
refined. This is in the spirit of the Lax–Wendroff Theorem, i.e., if it has not happened
on the finest computational grid (lack of apparent convergence, or in our case, singular-
ities in the wrong places), then one can quote the appropriate theorem to justify conver-
gence.

Remark 4. For an arbitrary system of conservation laws to have the decomposition in
Eqs. (10) to (13), it is necessary that one of the eigenvalues of the Jacobian matrix in each
dimension be(u, v, w), respectively, each repeated at leastm times. This is, of course, only
a necessary condition.

Remark 5. Our main theorem may appear to contradict some prevailing wisdom. For
example, in [16] the authors state that the advection Eq. (11) “does not hold a priori across
a shock.” This is, of course, generally true, but we have proven that it does hold in our sense
if Z remains continuous there.

Proof. Let ϕ(x, y, t) be aC1
0(R

2× R+) function. We multiply Eqs. (14) and (15) by
ϕ(xi , yj , tn) and use the summation-by-parts idea in the proof of theLW theorem, arriving
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at

∑
i, j,n

1t1x1y

[
qn

i, j

(
ϕ
(
xi , yj , tn

)− ϕ(xi , yj , tn−1
)

1t

)

+ Fn
i+ 1

2 , j

(
ϕ
(
xi+1, yj , tn

)− ϕ(xi , yj , tn
)

1x

)
+Gn

i, j+ 1
2

(
ϕ
(
xi , yj+1, tn

)− ϕ(xi , yj , tn
)

1y

)]
= 0 (16)

and

∑
i, j,n

1t1x1y

[
Zn

i, j

(
ϕ
(
xi , yj , tn

)− ϕ(xi , yj , tn−1
)

1t

)

+ Ẑn
i+ 1

2 , j

(
un

i+1, jϕ
(
xi+1, yj , tn

)− un
i, jϕ
(
xi , yj , tn

)
1x

)
+ Ẑn

i, j+ 1
2

(
vn

i, j+1ϕ
(
xi , yj+1, tn

)− vn
i, jϕ
(
xi , yj , tn

)
1y

)]
= 0. (17)

We let1t,1x,1y→ 0 for the converging subsequence. From Eq. (16), exactly as in
the proof of the Lax–Wendroff theorem (which uses the Lebesgue dominated convergence
theorem, the Lipschitz continuity of the flux functions, consistency, and the fact that

lim
h→0

ν(x + h) = ν(x) (18)

a.e. for bounded measurable functionsν), we have∫
R2×R+

qϕt + f ϕz+ gϕy = 0 (19)

for any such test functionϕ. This, of course, implies thatq is a classical solution of Eq. (10)
whereverq andZ are smooth and thatq andZ satisfy Eq. (12) at jumps.

Next we use the identity

un
i+1, jϕ

(
xi+1, yj , tn

)− un
i, jϕ
(
xi , yj , tn

)
1x

= un
i+1, j

(
ϕ
(
xi+1, yj , tn

)− ϕ(xi , yj , tn
)

1x

)
+
(

un
i+1, j − un

i, j

1x

)
ϕ
(
xi , yj , t

n
)

(20)

and the analogous identity involvingy divided differences. Chooseϕ to have support in
a regionÄ in which u is differentiable. We let1x,1y,1t→ 0 along the converging
subsequence. Using Eqs. (17) and (20), the Lebesgue dominated convergence theorem and
the usual Lax–Wendroff argument we arrive at∫

R2×R+
Zϕt + Z(u · ∇ϕ)+ Z(∇ · u)ϕ = 0. (21)

If Z is differentiable inÄ, a simple integration by parts gives us∫
Ä

ϕ(Zt + u · ∇Z) = 0 (22)
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for any suchϕ, henceZ is a classical solution of (11) inÄ. If Z has a jump we takeÄ to
be a sphere centered at a point of discontinuity. We then let the radius of the sphere go to
zero in Eq. (21) and obtain the jump conditions in Eq. (13) in a standard fashion.

We may proveZ is a classical solution whenu jumps with the help of the dominated
convergence theorem arriving at Eq. (22) in a straightforward fashion.

3. LEVEL SET EQUATION FOR COMPRESSIBLE FLOW

Consider the one-dimensional Euler equations with the level set equation in conservation
form 

ρ

ρu

E
ρφ


t

+


ρu

ρu2+ p

(E + p)u

ρuφ


x

= 0, (23)

whereρ is the density,u is the velocity,E is the total energy per unit volume,p is the
pressure, andφ is the level set function. Another alternative, as suggested in [18], is to
replace the conservative level set equation (4th equation) with the level set equation in
quasilinear or advection form

φt + uφx = 0 (24)

noting thatφ is valid in advection form since the values ofφ are meant to advect with the
particle velocityu, i.e., along streamlines.

3.1. Projection into Characteristic Fields

Modern shock capturing schemes are often based on projection into characteristic fields.
Usually the value of the left eigenvector of the Jacobian matrix is frozen and used to locally
decompose the system. Consider the Euler equations with the level set equation in advection
form. Projection by a left eigenvector,L = (l1, l2, l3, l4), leads to(l1, l2, l3, l4)


ρ

ρu

E
φ




t

+

(l1, l2, l3)
 ρu

ρu2+ p

(E + p)u




x

+ l4uφx = 0, (25)

where it is obvious that the spatial part of this equation cannot be written in conservation
form. In order to obtain conservation form for the projected equation one needs to use the
conservative version of the level set equation so that projection by a left eigenvector leads
to (l1, l2, l3, l4)


ρ

ρu

E
ρφ




t

+

(l1, l2, l3, l4)


ρu

ρu2+ p

(E + p)u

ρuφ




x

= 0 (26)

in conservation form. For this reason, the level set equation is written in conservation form
when formulating the Jacobian matrix and the associated eigensystem.
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3.2. Conservative Eigensystem

The total energy is the sum of the internal energy and the kinetic energy,

E = ρe+ ρu2

2
, (27)

wheree is the internal energy per unit mass. The pressure can be written asp= p(ρ, e, φ)
with partial derivativespρ, pe, and pφ . Alternatively, considering the pressure asp=
p(ρ, ρu, E, ρφ) allows one to write the partial derivatives of the pressure with respect
to the conserved variables as

∂p

∂ρ
= Ĥ − φpφ

ρ
, Ĥ = c2− 0(H − u2) (28)

∂p

∂(ρu)
= −0u,

∂p

∂E
= 0 (29)

∂p

∂(ρφ)
= pφ

ρ
, (30)

where the Gruneisen coefficient, the sound speed, and the total mixture enthalpy are defined
by

0 = pe

ρ
, c =

√
pρ + 0p

ρ
(31)

H = E + p

ρ
. (32)

The partial derivatives of the pressure are used to obtain the Jacobian matrix
0 1 0 0

−u2+ Ĥ − φpφ
ρ

2u− 0u 0
pφ
ρ

−uH + uĤ − uφpφ
ρ

H − 0u2 u+ 0u upφ
ρ

−uφ φ 0 u

 (33)

and the associated eigensystem

R1 =


1

u− c
H − uc
φ

 , R2 =


1
u

H − 1
b1

φ

 (34)

R3 =


1

u+ c
H + uc

φ

 , R4 =


0
0

− pφ
0ρ

1

 (35)

L1 =
(

b2

2
+ u

2c
− φpφ

2ρc2
,
−b1u

2
− 1

2c
,

b1

2
,

pφ
2ρc2

)
(36)
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L2 =
(

1− b2+ φpφ
ρc2

, b1u,−b1,− pφ
ρc2

)
(37)

L3 =
(

b2

2
− u

2c
− φpφ

2ρc2
,
−b1u

2
+ 1

2c
,

b1

2
,

pφ
2ρc2

)
(38)

L4 = (−φ, 0, 0, 1), (39)

where

b1 = pe

ρc2
, b2 = 1+ b1u2− b1H. (40)

3.3. Numerical Method

When discretizing along the lines of [22], the left eigenvectors are used to project into
the characteristic fields, the scalar flux in each characteristic field is discretized based on
the associated eigenvalue in that field, and the right eigenvectors are used to project out
of the characteristic fields. Then the contributions from each characteristic field are added
together to produce the total vector flux at a cell interface. These vector fluxes are differenced
in the usual manner resulting in a fully conservative numerical method.

In order to correctly project into the characteristic fields, the full left eigenvector is always
used. However, since conservation form is not required for the last equation, i.e., the level
set equation, only the first three components of the right eigenvectors are used to project out
of the characteristic fields. The level set equation is discretized independently in advection
form, noting that its characteristic information is determined byu and that nothing about it
need be conserved.

Consider the Ghost Fluid Method, developed in [5], wherepφ is identically zero. The
minimal system no longer depends on the level set equation and only the first three compo-
nents of the first three left and right eigenvectors are needed to update the minimal system.
That is, the one dimensional Euler equations can be discretized with a standard conserva-
tive scheme while the level set equation is independently discretized in advection form. For
both one- and two-dimensional computational results along with comparisons to the exact
solutions, see [5].

4. CHEMICALLY REACTING FLOW

Consider the two-dimensional thermally perfect Euler equations for multi-species flow
with a total ofN species,

Ut + [F(U)]x + [G(U)]y = 0, (41)

U =



ρ

ρu
ρv

E

ρY1
...

ρYN−1


, F(U) =



ρu

ρu2+ p
ρuv

(E + p)u

ρuY1
...

ρuYN−1


, G(U) =



ρv

ρuv

ρv2+ p

(E + p)v

ρvY1
...

ρvYN−1,


(42)
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E = −p+ ρ(u
2+ v2)

2
+ ρ

(
n∑

i=1

Yi hi

)
, hi (T) = h f

i +
∫ T

0
cp,i (s) ds, (43)

wheret is time,x andy are the spatial dimensions,ρ is the density,u andv are the velocities,
E is the energy per unit volume,Yi is the mass fraction of speciesi, hi is the enthalpy per
unit mass of speciesi, h f

i is the heat of formation of speciesi (enthalpy at 0K ), cp,i is
the specific heat at constant pressure of speciesi , and p is the pressure [7]. Note that
YN = 1− ∑N−1

i=1 Yi . The pressure is a function of the density, internal energy per unit mass,
and the mass fractions,p= p(ρ, e,Y1, . . . ,YN−1), with partial derivativespρ, pe and pYi

whereE= ρe+ ρ(u2+ v2)/2 defines the internal energy per unit mass.
The eigenvalues and eigenvectors for the Jacobian matrix ofF(U) are obtained by setting

A= 1 andB= 0 in the following formulas, while those for the Jacobian matrix ofG(U)
are obtained by settingA= 0 andB= 1.

The eigenvalues are

λ1 = û− c, λN+3 = û+ c (44)

λ2 = · · · = λN+2 = û, (45)

whereû is repeated(N+ 1) times.
The standard construction of upwind difference schemes requires the full eigensystem

of the Jacobian matrix ofF evaluated as some intermediate value ofU. When this Jacobian
matrix has a repeated eigenvalue, this involves finding a basis for the associated eigenspace
which can be complicated for systems with high multiplicity. The complementary projection
method (CPM) is an alternative approach where full upwinding is accomplished without
the use of the eigenvectors in the repeated eigenvalue field. Suppose the firstp eigenvalues
are repeated, then the correspondingp dimensional characteristic subspace is the span of
(L1, . . . ,L p). The remaining left and right eigenvectors can be used to define

f K = L K · F (46)

and write

F = F +
n∑

k=p+1

f K RK , (47)

where the vectorF can be upwinded according to the sign of the repeated eigenvalue
λ1= λ2 . . . = λp, and no basis need be chosen forF . For more details on the CPM, see [6].

The CPM requires the first and(N+ 3)rd left and right eigenvectors for the chemically
reacting flow example considered here. In addition, since the minimal conservative system
is the two-dimensional Euler equations, only the first four entries of the right eigenvectors
are needed. The necessary left and right eigenvectors are

L1 =
(

b2

2
+ û

2c
+ b3

2
,−b1u

2
− A

2c
,−b1v

2
− B

2c
,

b1

2
,
−b1z1

2
, . . . ,

−b1zN−1

2

)
(48)

L N+3 =
(

b2

2
− û

2c
+ b3

2
,−b1u

2
+ A

2c
,−b1v

2
+ B

2c
,

b1

2
,
−b1z1

2
, . . . ,

−b1zN−1

2

)
(49)

R1 =


1

u− Ac
v − Bc
H − ûc

 , RN+3 =


1

u+ Ac
v + Bc

H + ûc

 , (50)
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where the unnecessary terms in the right eigenvectors have been omitted for brevity and

q2 = u2+ v2, û = Au+ Bv (51)

c =
√

pρ + ppe

ρ2
, H = E + p

ρ
, (52)

b1 = pe

ρc2
, b2 = 1+ b1q

2− b1H, (53)

b3 = b1

N−1∑
i=1

Yi zi , zi = −pYi

pe
. (54)

4.1. Numerical Method

The two left eigenvectors are used to project into the two nonlinear fields, while only the
first four entries of the right eigenvectors are used to project out of these fields. The CPM
is used to construct the complementary subspace

F =


ρu

ρu2+ p
ρuv

(E + p)u

− L1F(U)R1− L N+3F(U)RN+3, (55)

whereF has length four and each of its component can be upwind differenced in the upwind
direction determined byu. The resulting flux is combined with the flux contributions from
the two nonlinear fields to yield the net numerical flux for the first four entries ofF(U).
These fluxes are differenced in the usual manner to get the proper upwind conservative
discretization for the first four equations, i.e., for the minimal system. For a dimension
by dimension discretization, the same procedure is applied to the flux in the other spatial
dimension, and then the total spatial contribution can be used with a TVD Runge Kutta
method to update the first four equations of the system, i.e., to update the minimal system.
The advection equations for the mass fractions Y1

...

YN−1


t

+ u

 Y1
...

YN−1


x

+ v

 Y1
...

YN−1,


y

= 0 (56)

are discretized independently in an equation by equation fashion noting that the character-
istic information for thex andy derivatives is determined byu andv, respectively, and that
nothing need be conserved.

4.2. Examples

Several of the examples from [4, 7] were recomputed using the nonconservative flux based
method outlined in this paper. Overall, the calculations using the new technique agreed well
with the old calculations. One particularly difficult example from [7] is repeated here.

Consider a 0.12 m domain with a shock wave located ax= 0.06 m traveling from right
to left in a 2/1/7 molar ratio of H2/O2/Ar where all gases are assumed to be thermally
perfect and a full chemical reaction mechanism is employed as discussed in [7]. The initial
data for the shock wave consist ofρ= .072 kg

m3 , u= 0 m
s and p= 7173 Pa on the left with
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FIG. 1. Fully conservative method.

ρ= .18075kg
m3 , u=−487.34 m

s , and p= 35594 Pa on the right. A solid wall boundary
condition is applied atx= 0 m and the shock wave reflects off this wall changing its direction
of travel. As this shock wave passes over the gas a second time, the gas is heated enough
to initiate chemical reactions. After a suitable induction time, a chemical combustion wave
forms at the wall and travels to the right eventually overtaking the shock wave resulting
in the formation of three waves. From left to right, there is a rarefaction wave, a contact
discontinuity, and a detonation wave.

Figure 1 shows the solution at 230µs with 400 uniform grid cells and 2300 equal time
steps using the fully conservative ENO-RF method outlined in [7]. Figure 2 shows the same
calculation using the nonconservative flux based ENO method (outlined in the Appendix)
for the mass fraction equations. The CPM [6] was used in both calculations. In [7], this
was shown to be a very sensitive problem, and the good agreement of the two methods is
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FIG. 2. Nonconservative flux based algorithm.

promising. The only major difference is in the height of the HO2 peak, although this seems
to have no effect on the rest of the solution.

A grid refinement study was carried out with 100, 200, 400, 800, and 1600 grid cells
using 575, 1150, 2300, 4600, and 9200 time steps, respectively. Figure 3 shows the results
with the fully conservative scheme while Fig. 4 shows the results with the nonconservative
flux based method for the mass fraction equations. The position of the lead detonation wave
converges with first order accuracy for both numerical algorithms. In addition, the peaks
in the HO2 mass fraction seem to converge more uniformly (i.e., monotonically) for the
nonconservative flux based method. Figures 5, 6, and 7 compare the two methods with 100,
400, and 1600 grid points, respectively. The fully conservative method is plotted withx’s
while the nonconservative flux based method is plotted witho’s.
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FIG. 3. Fully conservative method.

5. BN TWO PHASE EXPLOSIVES MODEL

Consider a simplified version of the one-dimensional Baer–Nunziato (BN) two phase
explosives model [1, 3, 10, 2] that ignores nozzling and source terms



ρgφg

ρgugφg

Egφg

ρsφs

ρsusφs

Esφs

ρs


t

+



ρgugφg(
ρgu2

g + pg
)
φg

(Eg + pg)ugφg

ρsusφs(
ρsu2

s + ps
)
φs

(Es + ps)usφs

ρsus


x

= 0, (57)



316 FEDKIW, MERRIMAN, AND OSHER

FIG. 4. Nonconservative flux based algorithm.

wheret is time,x is the spatial dimension,ρg, ug, Eg, pg, andφg are the density, velocity,
energy per unit volume, pressure, and volume fraction of the gas, andρs, us, Es, ps, and
φs are the density, velocity, energy per unit volume, pressure, and volume fraction of the
solid. The seventh equation is the compaction equation which is used to close the system
along with the saturation condition,φs+φg= 1. Assuming that neither phase has any ma-
terial strength, the pressure of each phase is a function of the density and internal energy
per unit mass of that phase,pg= pg(ρg, eg) and ps= ps(ρs, es), with partial derivatives
(ps)ρs, (ps)es, (pg)ρg , and(pg)eg whereEg= ρgeg+ ρgu2

g/2 andEs= ρses+ ρsu2
s/2 de-

fine the internal energies per unit mass. In addition, assume that the equations of state are
defined in a manner consistent with(pg)ρg = pg/ρg and (ps)ρs = ps/ρs as identities. A
more detailed version of the model is considered in [8].
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FIG. 5. The 100 grid cells;×, conservative;s, nonconservative.

Under the above assumptions, the eigenvalues areug− cg, ug, ug+ cg, us− cs, us, us+
cs, andus, with corresponding left and right eigenvectors

L1 =
(

b2g

2
+ ug

2cg
,
−b1gug

2
− 1

2cg
,

b1g

2
, 0, 0, 0, 0

)
(58)

L2 = (1− b2g, b1gug,−b1g, 0, 0, 0, 0
)

(59)

L3 =
(

b2g

2
− ug

2cg
,
−b1gug

2
+ 1

2cg
,

b1g

2
, 0, 0, 0, 0

)
(60)

L4 =
(

0, 0, 0,
b2s

2
+ us

2cs
,
−b1sus

2
− 1

2cs
,

b1s

2
, 0

)
(61)
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FIG. 6. The 400 grid cells;×, conservative;s, nonconservative.

L5 = (0, 0, 0, 1− b2s, b1sus,−b1s, 0) (62)

L6 =
(

0, 0, 0,
b2s

2
− us

2cs
,
−b1sus

2
+ 1

2cs
,

b1s

2
, 0

)
(63)

L7 = (0, 0, 0,−1, 0, 0, φs) (64)

R1 =



1
ug − cg

Hg − ugcg

0
0
0
0


, R2 =



1
ug

Hg − 1
b1g

0
0
0
0


, R3 =



1
ug + cg

Hg + ugcg

0
0
0
0


(65)
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FIG. 7. The 1600 grid cells;×, conservative;s, nonconservative.

R4 =



0
0
0
1

us − cs

Hs − uscs

1
φs


, R5 =



0
0
0
1
us

Hs − 1
b1s

1
φs


, R6 =



0
0
0
1

us + cs

Hs + uscs

1
φs


(66)

R7 =



0
0
0
0
0
0
1
φs


(67)



320 FEDKIW, MERRIMAN, AND OSHER

0g =
(pg)eg

ρg
, cg =

√
(pg)ρg +

0g pg

ρg
(68)

0s = (ps)es

ρs
, cs =

√
(ps)ρs +

0s ps

ρs
(69)

Hg = Eg + pg

ρg
, Hs = Es + ps

ρs
(70)

b1g = 0g

c2
g

, b2g = 1+ b1gu2
g − b1gHg (71)

b1s = 0s

c2
s

, b2s = 1+ b1su
2
s − b1sHs. (72)

5.1. Numerical Method

The seven left eigenvectors are used to project into the characteristic fields, while only the
first six entries of the seven right eigenvectors are used to project out of these fields, since
the minimal system consists of the first six equations. This avoids the common division
by zero problem introduced by the seventh term in the right eigenvectors, i.e., the 1/φs

term. This term blows up when a chemical reaction depletesφs to zero and has forced
unphysical modeling, e.g., solid cores [10], to avoid the problem. (Another method used to
avoid this problem involves the use of central schemes [17, 19].) In [8], a priori knowledge
that the seventh entry of the right eigenvectors could be discarded motivated manipulation
of the eigensystem in a manner that forces this division by zero problem into that location
eliminating it entirely.

The volume fraction evolution equation

(φs)t + us(φs)x = 0 (73)

is an advection equation, and it can be discretized independently noting that the characteristic
information is determined byus and that nothing need be conserved.

5.2. Examples

In [10], a conservation law for the number of particles per unit volume

nt + (usn)x = 0 (74)

was added to the one-dimensional BN model. Inclusion of Eq. (74) leads to a new weak
hyperbolicity whenφs= 0 due to the “blow-up” of the resultingn/ρsφs term in the eigen-
system. See [10] for details.

Using the continuity equation for the solid, Eq. (74) can be rewritten in advection form(
n

ρsφs

)
t

+ us

(
n

ρsφs

)
x

= 0, (75)

where the advected quantity is the number or particles per unit mass. This quantity blows
up as the chemical reaction proceeds to completion, i.e., asφs→ 0. Sincen is defined as
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the volume fraction divided by the particle volume

n = φs

Vp
(76)

Eq. (75) is equivalent to (
1

ρsVp

)
t

+ us

(
1

ρsVp

)
x

= 0 (77)

which blows up whenVp→ 0.
The problem with Eqs. (74), (75), and (77) is that they are all derived by advecting a

quantity that blows up as the reaction proceeds to completion. This can trivially be avoided
by advecting an equivalent quantity that vanishes as the reaction proceeds to completion. As
the number of particles per unit mass blows up, the mass per particle vanishes. Replacing
Eq. (75) with

(ρsVp)t + us(ρsVp)x = 0 (78)

and solving this equation in advection form removes the weak hyperbolicity. All that remains
are some decoding errors that occur when computingn from Eq. (76), althoughn is no longer
needed to solve the system. If conservation form is preferred, then Eq. (78) can be combined
with the continuity equation of the solid to obtain(

ρ2
sφsVp

)
t
+ (usρ

2
sφsVp

)
x
= 0 (79)

which can be substituted in place of Eq. (74) resulting in an eigensystem that contains a
well behavedρsVp term instead of a poorly behavedn/ρsφs term.

In Fig. 8 we repeat a simple shock tube calculation from [10] using Eq. (78) for the mass
per particle to replace the conservation equation forn. We use a 10 m domain with 200
grid cells and a final time of 0.006 s. Initially,ρg= ρs= 10 kg

m3 andpg= ps= 1.0× 106 Pa
on the left, whileρg= ρs= 1 kg

m3 and pg= ps= 1.0× 105 Pa on the right. In addition,
ug= us= 0 m

s , φs= 0.7, andn= 1.19× 1011particles
m3 everywhere. Both the solid and the gas

phase are assumed to obeyp= ρRT ande= cvT with Rg= Rs= 287 J
kgK , (cv)g= 718 J

kgK ,
and (cv)s= 239 J

kgK . The results compare well with those from [10] where the conservation
equation forn was used. Note that the solution for the mass per particle variable only
contains a simple contact discontinuity propagating to the right, while the solutions for the
particle volume variable and the number of particle per unit volume variable both contain
shocks and rarefactions.

APPENDIX A: CENTRAL SCHEMES

The examples in this paper were discussed based on an upwind discretization with eigen-
vector projections. In this appendix, a central discretization is briefly discussed. See [17, 19]
for examples of central schemes.

Consider the one-dimensional Euler equations withZ satisfying the following advection
equation

Zt + uZx = 0 (80)



322 FEDKIW, MERRIMAN, AND OSHER

FIG. 8. BN calculation.

which can be placed into conservation form along with the Euler equations
ρ

ρu

E
ρZ


t

+


ρu

ρu2+ p

(E + p)u

ρuZ


x

= 0 (81)

and discretized equation by equation with a central scheme. The new technique presented
in this paper would not alter the central discretization of the Euler equations, but Eq. (80)
would be discretized in nonconservative form instead of

(ρZ)t + (ρuZ)x = 0 (82)
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in conservation form. Equation (82) requires artificial numerical dissipation proportional to
the maximum of|u+ c|and|u− c|when discretizing with a central scheme since it includes
the continuity equation by construction. Moreover, shocks and rarefactions can occur inρZ.
In contrast, Eq. (80) does not require this (possibly large) numerical dissipation and there
are no shocks or rarefactions inZ.

APPENDIX B: ADVECTION EQUATION DISCRETIZATION

Consider an advection equation of the form

Zt + uZx + vZy = 0, (83)

where Z is the advected quantity andu andv are the particle velocities in thex and y
direction, respectively. Nonconservative flux based discretizations forZx are given below.
Zy is discretized in a similar fashion and then these two terms are combined withu andv
at each grid node before applying a 3rd order TVD Runge Kutta method [9, 22] for time
integration.

B.1. Nonconservative Flux Based ENO Discretization

A nonconservative extension of the ENO-Roe discretization is used, since there are no
nonlinear waves such as shocks and rarefactions [9, 22].

The numerical flux functionF is defined through the relation

(Zx)i =
Fi+ 1

2
− Fi− 1

2

1x
, (84)

where theFi±1/2 are the values of the numerical flux function at the cell walls. The numerical
flux function is constructed at the cell walls by considering the primitive functionH of
another functionh, whereh is identical to the numerical flux functionF at the cell walls.

H is calculated at the cell walls with polynomial interpolation. The zeroth order divided
differences,D0

i+1/2, and all higher orderevendivided differences ofH exist at the cell walls
and have the subscripti ± 1

2. The first order divided differencesD1
i and all higher order

odddivided differences ofH exist at the grid points and have the subscripti . Note that the
zeroth order divided differences ofH vanish with differentiation and are not needed.

The first order divided differences ofH are

D1
i H = Zi (85)

and the higher divided differences are

D2
i+ 1

2
H = 1

2
D1

i+ 1
2
Z, D3

i H = 1

3
D2

i Z. (86)

Consider a specific grid pointi0. If ui0 = 0, then setting(Zx)i0 = 0 will be algorithmically
correct since(uZx)i0 = 0 is desired, otherwiseui0 determines the upwind direction.

The associated numerical flux functionFi0+ 1/2 is defined as follows: Ifui0 > 0, then
k= i0. If ui0 < 0, thenk= i0+ 1. Define

Q1(x) =
(
D1

k H
)(

x − xi0+ 1
2

)
. (87)
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If |D2
k−1/2H | ≤ |D2

k+1/2H |, thenc= D2
k−1/2H andk?= k− 1. Otherwise,c= D2

k+1/2H and
k?= k. Define

Q2(x) = c
(

x − xk− 1
2

)(
x − xk+ 1

2

)
. (88)

If |D3
k? H | ≤ |D3

k?+1H |, thenc?= D3
k? H . Otherwise,c?= D3

k?+1H . Define

Q3(x) = c?
(

x − xk?− 1
2

)(
x − xk?+ 1

2

)(
x − xk?+ 3

2

)
. (89)

Then

Fi0+ 1
2
= D1

k H + c(2(i0− k)+ 1)1x + c?
(
3(i0− k?)2− 1

)
(1x)2. (90)

Likewise, the associated numerical flux functionFi0−1/2 is defined as follows: Ifui0 > 0,
thenk= i0− 1. If ui0 < 0, thenk= i0. Define

Q1(x) =
(
D1

k H
)(

x − xi0− 1
2

)
. (91)

If |D2
k−1/2H | ≤ |D2

k+1/2H |, thenc= D2
k−1/2H andk?= k− 1. Otherwise,c= D2

k+1/2H and
k?= k. Define

Q2(x) = c
(

x − xk− 1
2

)(
x − xk+ 1

2

)
. (92)

If |D3
k? H ||D3

k?+1H |, thenc?= D3
k? H . Otherwise,c?= D3

k?+1H . Define

Q3(x) = c?
(

x − xk?− 1
2

)(
x − xk?+ 1

2

)(
x − xk?+ 3

2

)
. (93)

Then

Fi0− 1
2
= D1

k H + c(2(i0− 1− k)+ 1)1x + c?(3(i0− 1− k?)2− 1)(1x)2. (94)

Finally, (Zx)i0 is given by Eq. (84).

B.2. Nonconservative Flux Based WENO Discretization

Consider a 5th order WENO scheme with the parameterε [12]. Large values ofε cause
the stencil to be biased toward central differencing (causing oscillations), while small values
of ε cause the stencil to be biased toward 3rd order ENO (lowering the order). To get a
stencil biased toward the fifth order fluxε is defined as

ε = 10−6 max
{
v2

1, v
2
2, v

2
3, v

2
4, v

2
5

}+ 10−99, (95)

where 10−99 is used to avoid division by zero and should be much smaller than the first
term in most regions of the domain.

Consider a specific grid pointi0. If ui0 = 0, then setting(Zx)i0 = 0 will be algorithmically
correct since(uZx)i0 = 0 is desired, otherwiseui0 determines the upwind direction.
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The associated numerical flux functionFi0+1/2 is defined as follows: Ifui0 > 0, then
v1= Zi0−2, v2= Zi0−1, v3= Zi0, v4= Zi0+1, andv5= Zi0+2. If ui0 < 0, thenv1= Zi0+3, v2=
Zi0+2, v3= Zi0+1, v4= Zi0, andv5= Zi0−1.

Define the smoothness

S1 = 13

12
(v1− 2v2+ v3)

2+ 1

4
(v1− 4v2+ 3v3)

2 (96)

S2 = 13

12
(v2− 2v3+ v4)

2+ 1

4
(v4− v4)

2 (97)

S3 = 13

12
(v3− 2v4+ v5)

2+ 1

4
(3v3− 4v4+ v5)

2 (98)

and the weights

a1 = 1

10

1

(ε + S1)2
, w1 = a1

a1+ a2+ a3
(99)

a2 = 6

10

1

(ε + S2)2
, w2 = a2

a2+ a2+ a3
(100)

a3 = 3

10

1

(ε + S3)2
, w3 = a3

a3+ a2+ a3
(101)

to get the flux

Fi0+ 1
2
= w1

(
v1

3
− 7v2

6
+ 11v3

6

)
+ w2

(−v2

6
+ 5v3

6
+ v4

3

)
+ w3

(
v3

3
+ 5v4

6
− v5

6

)
.

(102)

Likewise, the associated numerical flux functionFi0−1/2 is defined as follows: Ifui0 > 0,
thenv1= Zi0−3, v2= Zi0−2, v3= Zi0−1, v4= Zi0, andv5= Zi0+1. If ui0 < 0, thenv1= Zi0+2,

v2= Zi0+1, v3= Zi0, v4= Zi0−1, andv5= Zi0−2.
Then the smoothness, weights, and flux are defined exactly as above yielding

Fi0− 1
2
= w1

(
v1

3
− 7v2

6
+ 11v3

6

)
+w2

(−v2

6
+ 5v3

6
+ v4

3

)
+w3

(
v3

3
+ 5v4

6
− v5

6

)
. (103)

Finally,

(Zx)i0 =
Fi0+ 1

2
− Fi0− 1

2

1x
. (104)
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